Experimental and Simulation Study of Relative Permeabilities in Heavy Oil/Water/Gas Systems

atmire.migration.oldid3019
dc.contributor.advisorMoore, Robert Gordon
dc.contributor.authorModaresghazani, Jafar
dc.date.accessioned2015-03-16T20:25:14Z
dc.date.available2015-06-23T07:00:46Z
dc.date.issued2015-03-16
dc.date.submitted2015en
dc.description.abstractAn experimental study was conducted to investigate the relative permeability behaviour of a typical Canadian bitumen, water and gas. Series of isothermal core flood experiments were conducted on an unconsolidated core composed of cleaned Athabasca sand matrix and relative permeabilities of the involved phases were determined. Athabasca bitumen was used as the oil phase and distilled water and nitrogen were used as the water and gas phases respectively. A vertical sand-pack core-holder of 1.5 inch diameter and 2 feet long was designed and fabricated to perform sequential injection of oil, gas and water at reservoir temperature and pressure, while collecting information on pressure drop across the core and fluid volumes. The history match technique was used to determine relative permeabilities for two-phase and three-phase water/oil/gas systems. Two-phase oil-water experiments were started with a primary drainage process followed by imbibition process and secondary drainage to assess the possible hysteresis effects on oil-water relative permeability. The secondary drainage process in which the core reaches the residual water saturation, was followed by gas injection till no further liquid was produced. Three-phase flow was studied by first injecting a slug of oil into a gas flooded core. Then a slug of water was injected which was followed by continuous gas injection to simulate the three-phase flow inside the sand pack. Stone’s first and second model and Baker’s linear interpolation model were used to calculate the three-phase oil relative permeability in the three-phase flow experiment. Two-phase drainage water/oil and gas/liquid relative permeabilities were used as input for three-phase models to calculate the oil three-phase relative permeability. Hysteresis was found to exist in both wetting-phase and non-wetting-phase relative permeability in two-phase water/oil systems. Overall, the individual phase relative permeability was higher when its saturation was increasing than when decreasing. Predicted values for oil and water production were in good agreement with experimental results for all drainage and imbibition two-phase oil/water experiments. Gas/liquid relative permeabilities for gas injection into an oil-flooded core, showed low gas relative permeability compared to the liquid relative permeabilities by around two orders of magnitude. These relative permeabilities resulted in a close match for the produced liquid even though the gas production was slightly over predicted at higher gas saturations. In three-phase oil/water/gas experiments, two-phase water/oil and liquid/gas relative permeabilities were used to calculate the three-phase oil relative permeabilities. Among the three examined models, Stone’s second model produced the best prediction for liquid production and late time gas production even though the prediction of all of the models showed a significant deviation from experimental gas production during the early and middle time of the flood.en_US
dc.identifier.citationModaresghazani, J. (2015). Experimental and Simulation Study of Relative Permeabilities in Heavy Oil/Water/Gas Systems (Doctoral thesis, University of Calgary, Calgary, Canada). Retrieved from https://prism.ucalgary.ca. doi:10.11575/PRISM/26055en_US
dc.identifier.doihttp://dx.doi.org/10.11575/PRISM/26055
dc.identifier.urihttp://hdl.handle.net/11023/2116
dc.language.isoeng
dc.publisher.facultyGraduate Studies
dc.publisher.institutionUniversity of Calgaryen
dc.publisher.placeCalgaryen
dc.rightsUniversity of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission.
dc.subjectEngineering--Petroleum
dc.subject.classificationRelative Permeabilityen_US
dc.subject.classificationHeavy Oilen_US
dc.subject.classificationHistory matchen_US
dc.titleExperimental and Simulation Study of Relative Permeabilities in Heavy Oil/Water/Gas Systems
dc.typedoctoral thesis
thesis.degree.disciplineChemical and Petroleum Engineering
thesis.degree.grantorUniversity of Calgary
thesis.degree.nameDoctor of Philosophy (PhD)
ucalgary.item.requestcopytrue
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ucalgary_2015_modaresghazani_jafar.pdf
Size:
4.21 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.65 KB
Format:
Item-specific license agreed upon to submission
Description: