The Effects of Force-Velocity Test Specificity on On-Ice Acceleration Performance Prediction in Elite Speed Skaters
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
This primary purpose of this thesis was to investigate the influence of off-ice force-velocity test specificity on the prediction of on-ice acceleration performance in elite long track speed skaters. We assessed a functional force-velocity relationship using three loaded jump protocols. In the first study, we established the intra-day reliability of two novel unilateral loaded jump protocols, the single leg horizontal (JumpHorz) and lateral (JumpLat) jumps. These protocols were shown to be reliable, displaying significant interrelationships with on-ice sprint race split times at distances of 100 m, 400 m, and 500 m. The second study validated an exponential function model to evaluate velocity changes during an on-ice sprint start that provided a more detailed assessment of on-ice acceleration capacity compared to the convention of split times. The exponential model allowed for the calculation of performance parameters, which demonstrated strong reliability, and differentiation between elite and sub-elite athletes. In the final study, we compared the JumpLat, JumpHorz and CMJ loaded jump tests for the prediction of on-ice acceleration performance obtained from our exponential model. Using a regularized regression model, we found that the loading condition is more significant than movement specificity for predicting on-ice acceleration performance. In summary, these studies provide practitioners in skating sports with novel off and on-ice testing methodology that may be used to better monitor performance during the running and gliding phases on-ice, and to inform individualized training prescription.