Improving the Accuracy of GNSS Receivers in Urban Canyons using an Upward-Facing Camera
dc.contributor.advisor | O'Keefe, Kyle P. G. | |
dc.contributor.author | Gakne, Paul Verlaine | |
dc.contributor.committeemember | Gao, Yang | |
dc.contributor.committeemember | Wang, Ruisheng | |
dc.contributor.committeemember | Fapojuwo, Abraham Olatunji | |
dc.contributor.committeemember | Ruotsalainen, Laura | |
dc.date | 2018-11 | |
dc.date.accessioned | 2018-07-05T20:17:13Z | |
dc.date.available | 2018-07-05T20:17:13Z | |
dc.date.issued | 2018-07-03 | |
dc.description.abstract | Global Navigation Satellite Systems are widely used as localization systems for various applications in indoor and outdoor environments. Autonomous vehicles for example rely on navigation sensors such as GNSS receivers, INS, odometers, LiDAR, radar, etc. However, none of these sensors alone is able to provide satisfactory position solutions in terms of accuracy, availability and reliability all the time and in all environments. This thesis presents a new tightly coupling method fusing the egomotion of a land vehicle estimated from a sky-pointing camera with GNSS signals and a digital map for navigation purposes in harsh urban canyon environments. The advantages of this configuration are three-fold: firstly, for the GNSS signals, the upward-facing camera will be used to classify the acquired images into sky and non-sky (known as segmentation). A satellite falling into the non-sky areas (e.g., buildings) will be rejected and not considered for the final position solution computation. Secondly, the narrow field of view sky-pointing camera is helpful for urban area egomotion estimation in the sense that it does not see most of the moving objects (e.g., cars) and thus is able to estimate the egomotion with fewer outliers than is typical with a forward-facing camera. Thirdly, the skyline can be extracted and serves as a finger print of the vehicle location in the city. This information can then be correlated with a 3D city model to obtain the vehicle location. In order to obtain an accurate solution from the proposed method, a few intermediate steps had to be taken into account. An improved image segmentation algorithm is presented. The output of this algorithm served for the skyline positioning and the camera-based multipath mitigation. Also, an accurate visual odometry was implemented. Moreover, the monocular-based visual odometry is able to determine the vehicle translation accurately but up to a scale only. An integrated system that tackles the scale factor issue is designed. From five datasets evaluated in this research, the proposed method has shown to be robust and provide more accurate position, velocity and attitude solution at least 83% of the time than the GNSS-only and loosely coupled GNSS/vision solutions. | en_US |
dc.identifier.citation | Gakne, P. V. (2018). Improving the Accuracy of GNSS Receivers in Urban Canyons using an Upward-Facing Camera (Doctoral thesis, University of Calgary, Calgary, Canada). Retrieved from https://prism.ucalgary.ca. doi:10.11575/PRISM/32274 | en_US |
dc.identifier.doi | http://dx.doi.org/10.11575/PRISM/32274 | |
dc.identifier.uri | http://hdl.handle.net/1880/107052 | |
dc.language.iso | eng | |
dc.publisher.faculty | Graduate Studies | |
dc.publisher.faculty | Schulich School of Engineering | |
dc.publisher.institution | University of Calgary | en |
dc.publisher.place | Calgary | en |
dc.rights | University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. | |
dc.subject | GPS | |
dc.subject | GNSS | |
dc.subject | Satellite | |
dc.subject | Visual Odometry | |
dc.subject | Camera | |
dc.subject | Motion estimation | |
dc.subject | Tightly-coupling integration | |
dc.subject | Vehicle navigation | |
dc.subject | Image Segmentation | |
dc.subject | 3D building model | |
dc.subject | Upward-facing camera | |
dc.subject | Clustering algorithms | |
dc.subject.classification | Statistics | en_US |
dc.subject.classification | Engineering--Aerospace | en_US |
dc.subject.classification | Engineering--Automotive | en_US |
dc.subject.classification | Engineering--Electronics and Electrical | en_US |
dc.subject.classification | Robotics | en_US |
dc.title | Improving the Accuracy of GNSS Receivers in Urban Canyons using an Upward-Facing Camera | |
dc.type | doctoral thesis | |
thesis.degree.discipline | Geomatics Engineering | |
thesis.degree.grantor | University of Calgary | |
thesis.degree.name | Doctor of Philosophy (PhD) | |
ucalgary.item.requestcopy | true |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- ucalgary_2018_gakne_paulverlaine.pdf
- Size:
- 6.26 MB
- Format:
- Adobe Portable Document Format
- Description:
- PhD thesis
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.74 KB
- Format:
- Item-specific license agreed upon to submission
- Description: