Investigation of grid orientation in a two-dimensional, compositional, three-phase steam model

dc.contributor.advisorAziz, Khalid
dc.contributor.authorAbou-Kassem, Jamal Hussein
dc.date.accessioned2005-07-21T19:54:30Z
dc.date.available2005-07-21T19:54:30Z
dc.date.issued1981
dc.descriptionBibliography: p. 271-275.en
dc.description.abstractA new three-phase steamflood numerical model has been developed. It is fully implicit with the Jacobian being calculated analytically. The model can operate in one and two dimensions, compositional and noncompositional modes with the choice of block-centered or pointdistributed grid systems employing five-point or nine-point finite difference schemes. Two different approaches have been employed and tested for their ability to remove the effect of grid orientation in steamflood simulation. The nine-point finite difference scheme reduces the grid orientation effects dramatically while the harmonic total mobility scheme is demonstrated to aggravate the problem rather than alleviate it. The applicability of the two-point upstream mobility in steamflood simulation has been investigated. It has been shown that the twopoint upstream mobility weighting may not be valid for thermal process simulators. The results of grid size and time step sensitivity analyses show that the time - pore volume injected relationship is very sensitive to grid size and to a much lesser extent to time step size. Sensitivity studies of grid size and time step are meaningful only if each is carried out while the other variable has been chosen to minimize the truncation error associated with it. The effects of well model, heat loss, and gas hysteresis on performance parameters and primary variables are also presented and discussed. Several side benefits have resulted from this investigation. These are: 1. A novel method of solution has been developed. It offers significant reductions in both storage and computational requirements for problems with large number of grid blocks. 2. A one-problem formulation method has been developed. It involves the introduction of new pseudo physical equilibrium constants. 3. A new implicit injection scheme which takes into account the effect of steam flashing on injectivity has been developed. 4. Equations for the well geometric factor in the well model f or a corner well block have been derived. 5. An analytical solution for the rate of heat loss to the surrounding formations has been developed.
dc.format.extentxx, 287 leaves : ill. ; 30 cm.en
dc.identifier.citationAbou-Kassem, J. H. (1981). Investigation of grid orientation in a two-dimensional, compositional, three-phase steam model (Doctoral thesis, University of Calgary, Calgary, Canada). Retrieved from https://prism.ucalgary.ca. doi:10.11575/PRISM/12433en_US
dc.identifier.doihttp://dx.doi.org/10.11575/PRISM/12433
dc.identifier.lccTN 871 A36 1981 Ficheen
dc.identifier.otherNL Number: 52343en
dc.identifier.urihttp://hdl.handle.net/1880/22121
dc.language.isoeng
dc.publisher.institutionUniversity of Calgaryen
dc.publisher.placeCalgaryen
dc.rightsUniversity of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission.
dc.subject.lccTN 871 A36 1981 Ficheen
dc.subject.lcshPetroleum engineering
dc.subject.lcshSecondary recovery of oil
dc.subject.lcshOil field flooding
dc.titleInvestigation of grid orientation in a two-dimensional, compositional, three-phase steam model
dc.typedoctoral thesis
thesis.degree.disciplineChemical and Petroleum Engineering
thesis.degree.grantorUniversity of Calgary
thesis.degree.nameDoctor of Philosophy (PhD)
ucalgary.item.requestcopyTRUE
ucalgary.thesis.accessionTheses Collection 58.002:Box 401 82483925
ucalgary.thesis.notesUARCen
ucalgary.thesis.uarcreleasenoen
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
thesis_Abou-Kassem_1981.pdf
Size:
86.95 MB
Format:
Adobe Portable Document Format
Description:
Thesis
Collections