Data-driven needle puncture detection for the delivery of urgent medical care in space
Date
2024-11-21
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Needle thoracostomy (NT) is a surgical procedure that treats one of the most preventable causes of trauma-related death: dangerous accumulations of air between the chest wall and the lungs. However, needle-tip overshoot of the target space can result in the inadvertent puncture of critical structures like the heart. This type of complication is fatal without urgent surgical care, which is not available in resource-poor environments like space. Since NT is done blind, operators rely on tool sensations to identify when the needle has reached its target. Needle instrumentation could enable puncture notifications to help operators limit tool-tip overshoot, but such a solution requires reliable puncture detection from manual (i.e., variable-velocity) needle insertion data streams. Data-driven puncture-detection (DDPD) algorithms are appropriate for this application, but their performance has historically been unacceptably low for use in safety-critical applications. This work contributes towards the development of an intelligent device for manual NT assistance by proposing two novel DDPD algorithms. Three data sets are collected that provide needle forces and displacements acquired during insertions into ex vivo porcine tissue analogs for the human chest, and factors affecting DDPD algorithm performance are analyzed in these data. Puncture event features are examined for each sensor, and the suitability of both accelerometer measurements and diffuse reflectance measurements are evaluated within the context of NT. Finally, DDPD ensembles are proposed that yield a 5.1-fold improvement in precision as compared to the traditional force-only DDPD approach. These results lay a foundation for improving the urgent delivery of percutaneous procedures in space and other resource-poor settings.
Description
Keywords
Emergency medicine, Needle thoracostomy, Data-driven puncture detection, Signal processing, Optimization, Needle instrumentation
Citation
L'Orsa, R. (2024). Data-driven needle puncture detection for the delivery of urgent medical care in space (Doctoral thesis, University of Calgary, Calgary, Canada). Retrieved from https://prism.ucalgary.ca.