Modeling of gas production from hydrates in porous media

dc.contributor.advisorPooladi-Darvish, Mehran
dc.contributor.authorHong, Huifang
dc.date.accessioned2005-08-08T19:58:41Z
dc.date.available2005-08-08T19:58:41Z
dc.date.issued2003
dc.descriptionBibliography: p. 194-204en
dc.description.abstractGas hydrates are considered to be an alternative energy resource of the future, as they exist in enormous quantities in permafrost and offshore environments. However, due to the severe environmental conditions of gas hydrate reservoirs and their solid nonflowing form, extensive technological development and expertise are required before commercial gas production becomes possible. In this work, both analytical and numerical mathematical models are developed to perform simulation studies of gas production from methane-hydrate by the depressurization method. The three primary mechanisms involved in hydrate decomposition in porous media are considered to be the heat transfer to the decomposing zone, the kinetics of hydrate decomposition and the gas-water two-phase flow. The relative importance of these mechanisms is compared over a realistic range of physical properties. Considering the rate-controlling mechanisms, a new analytical model is developed to predict the performance of hydrate decomposition in porous media. In a second part of the work, a two-dimensional numerical model for gas production from hydrate reservoirs is developed. The model includes equations of conductive and convective heat transfer, kinetics of hydrate decomposition, and gaswater two-phase flow. A single-well case is considered to model a hydrate reservoir where the hydrate-bearing layer overlies a free gas zone. The importance of the different mechanisms is examined by investigating the effect of various parameters, including formation properties, operating conditions and kinetic parameters, on gas production behaviour. The results suggest that the rate of heat transfer plays an important role in the process. Furthermore, the rate of gas generation from hydrate decomposition would not be affected unless the reaction rate constants in porous media are smaller than those measured in stirred reactors by many orders of magnitude. Under operating condition of constant bottom-hole-pressure, the rate of gas generation increases significantly with an increase in the rock permeability. It is estimated that the gas production rate from hydrate decomposition can be as high as 2-4 MMSCF/D in a drainage area of one- section (1600m x 1600m) with 10 m hydrate at top.
dc.format.extentxxi, 243 leaves : ill. ; 30 cm.en
dc.identifier.citationHong, H. (2003). Modeling of gas production from hydrates in porous media (Master's thesis, University of Calgary, Calgary, Canada). Retrieved from https://prism.ucalgary.ca. doi:10.11575/PRISM/21961en_US
dc.identifier.doihttp://dx.doi.org/10.11575/PRISM/21961
dc.identifier.isbn0612872793en
dc.identifier.lccAC1 .T484 2003 H66en
dc.identifier.urihttp://hdl.handle.net/1880/39982
dc.language.isoeng
dc.publisher.institutionUniversity of Calgaryen
dc.publisher.placeCalgaryen
dc.rightsUniversity of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission.
dc.titleModeling of gas production from hydrates in porous media
dc.typemaster thesis
thesis.degree.disciplineChemical and Petroleum Engineering
thesis.degree.grantorUniversity of Calgary
thesis.degree.nameMaster of Science (MSc)
ucalgary.item.requestcopytrue
ucalgary.thesis.accessionTheses Collection 58.002:Box 1444 520708879
ucalgary.thesis.notesUARCen
ucalgary.thesis.uarcreleaseyen
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
thesis_Hong_2003.pdf
Size:
104.44 MB
Format:
Adobe Portable Document Format
Description:
Thesis
Collections