Maneuvering Mechanisms for Omnidirectional Robots using Semi-circular Mecanum Wheels

atmire.migration.oldid3325
dc.contributor.advisorRamirez-Serrano, Alejandro
dc.contributor.authorGuzman Franco, Victor Hugo
dc.date.accessioned2015-06-19T21:51:26Z
dc.date.available2015-11-20T08:00:31Z
dc.date.issued2015-06-19
dc.date.submitted2015en
dc.description.abstractThe recently designed Semi-circular Mecanum Double Wheel (SMDW) is a type of wheel that provides vehicles with enhanced omnidirectional motion on rough terrain and obstacle overcoming capabilities. This thesis proposes a new maneuvering methodology that allows robots with SMDWs to overcome obstacles in diverse approach configurations allowing robots to select their position and orientation according to their environment. The techniques developed prior to this work considered only the obstacle overcoming in a lateral motion, significantly restricting the holonomic abilities of the device. The methodology proposed in this thesis considers the generation of cubic spline trajectories that connect the initial position and orientation of the robot with the target configurations and the SMDWs states necessary to perform the obstacle overcoming task. For the generation of those trajectories a Particle Swarm Optimization (PSO) search technique explores the navigation space of the robot in order to find suitable control point locations to achieve the required robot’s position and wheels states. The obtained trajectories were tested using a novel physical simulator that incorporates the effects of the peripheral rollers in order to evaluate the performance over a wide range of obstacles and terrain configurations. The new methodology provides an effective tool to enable robots using SMDWs to move and navigate more effectively in complex outdoor and indoor rough terrains.en_US
dc.identifier.citationGuzman Franco, V. H. (2015). Maneuvering Mechanisms for Omnidirectional Robots using Semi-circular Mecanum Wheels (Master's thesis, University of Calgary, Calgary, Canada). Retrieved from https://prism.ucalgary.ca. doi:10.11575/PRISM/26824en_US
dc.identifier.doihttp://dx.doi.org/10.11575/PRISM/26824
dc.identifier.urihttp://hdl.handle.net/11023/2312
dc.language.isoeng
dc.publisher.facultyGraduate Studies
dc.publisher.institutionUniversity of Calgaryen
dc.publisher.placeCalgaryen
dc.rightsUniversity of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission.
dc.subjectEngineering--Mechanical
dc.subject.classificationSemi-circular Mecanum Wheelen_US
dc.subject.classificationOmnidirectional Ground Vehiclesen_US
dc.subject.classificationGround Robot Maneuveringen_US
dc.titleManeuvering Mechanisms for Omnidirectional Robots using Semi-circular Mecanum Wheels
dc.typemaster thesis
thesis.degree.disciplineMechanical and Manufacturing Engineering
thesis.degree.grantorUniversity of Calgary
thesis.degree.nameMaster of Science (MSc)
ucalgary.item.requestcopytrue
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ucalgary_2015_guzman_victor.pdf
Size:
5.96 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.65 KB
Format:
Item-specific license agreed upon to submission
Description: