Control of an Aerial Manipulator with an Attached Two DoF Arm

dc.contributor.advisorRamirez-Serrano, Alejandro
dc.contributor.authorStaples, Marshall James
dc.contributor.committeememberGoldsmith, Peter
dc.contributor.committeememberGannuci, Fadhel
dc.contributor.committeememberPieper, Jeff K.
dc.date2018-06
dc.date.accessioned2018-02-22T17:27:14Z
dc.date.available2018-02-22T17:27:14Z
dc.date.issued2018-02
dc.description.abstractAn aerial manipulator is the combined system of a robot arm attached to an unmanned aerial vehicle (UAV). The aerial vehicle increases the size of the robot arm’s workspace in three dimensions, allowing the robot arm to execute manipulation tasks where it could not before. However, it is challenging to effectively control the position of the end-effector of a robot arm attached to a UAV due to the kinematic and dynamic coupling of the two systems. The focus of this work is to develop an effective control algorithm to enable a aerial manipulator comprising an 2-DOF robot arm and a UAV to follow complex trajectories in 3D space as well as maneuver the UAV in coordination with the arm to place the end-effector in position and orientation suitable for tasks not possible today. To accomplish this task, a mathematical model of the coupled kinematics and dynamics of the UAV and robot arm are formulated. In addition, such model is used for the control of the aerial manipulator. The chosen control solution of an adaptive sliding mode controller for the robot arm is shown to be effective in simulation tests. With the proposed control architecture, the robot arm is able to track any 3D curve projected into its planar workspace while the UAV performs the needed movements to map the robot arm 2D trajectories into the desired 3D curves.en_US
dc.identifier.citationStaples, M. J. (2018). Control of an Aerial Manipulator with an Attached Two DoF Arm (Master's thesis, University of Calgary, Calgary, Canada). Retrieved from https://prism.ucalgary.ca. doi:10.11575/PRISM/5477en_US
dc.identifier.doihttp://dx.doi.org/10.11575/PRISM/5477
dc.identifier.urihttp://hdl.handle.net/1880/106403
dc.language.isoeng
dc.publisher.facultyGraduate Studies
dc.publisher.facultySchulich School of Engineering
dc.publisher.institutionUniversity of Calgaryen
dc.publisher.placeCalgaryen
dc.rightsUniversity of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission.
dc.subjectSliding Mode Control
dc.subjectadaptive sliding mode control
dc.subjectaerial manipulation
dc.subject.classificationEducation--Sciencesen_US
dc.subject.classificationApplied Mechanicsen_US
dc.subject.classificationEngineering--Mechanicalen_US
dc.subject.classificationRoboticsen_US
dc.titleControl of an Aerial Manipulator with an Attached Two DoF Arm
dc.typemaster thesis
thesis.degree.disciplineMechanical and Manufacturing Engineering
thesis.degree.grantorUniversity of Calgary
thesis.degree.nameMaster of Science (MSc)
ucalgary.item.requestcopytrue
ucalgary.thesis.checklistI confirm that I have submitted all of the required forms to Faculty of Graduate Studies.en_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ucalgary_2018_staples_marshall.pdf
Size:
3.96 MB
Format:
Adobe Portable Document Format
Description:
Main article
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.74 KB
Format:
Item-specific license agreed upon to submission
Description: