Neural Correlates of Proprioception After Stroke
Date
2019-05-15
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Proprioception, one’s sense of limb and body position (position sense) and movement (kinesthesia), is impaired in up to 64% of individuals after stroke. Proprioceptive deficits in the arm result in poor coordination of multiple joints, leading to decreased reaching accuracy and poor fine motor coordination. After stroke, these impairments have been associated with longer hospital stays and poorer functional recovery. Despite consensus that proprioception contributes to efficient arm movement, relatively little is known about it in comparison to the motor system. The goal of this thesis was to investigate the structural anatomy underlying proprioceptive awareness after stroke and provide a foundation upon which targeted interventions for proprioceptive deficits may be built. In chapter two, a literature review was conducted that examined subcomponents, assessments, and interventions of proprioception. This review identified that few proprioceptive assessments or interventions exist and highlighted considerations that might guide intervention development. In chapter three, a lesion analysis was conducted in a large cohort. Lesions in the parietal lobe, somatosensory association areas, and white matter pathways that connect the parietal, temporal and frontal lobes were associated with poor performance on a robotic proprioceptive matching task at approximately six months post-stroke. In chapter four, a diffusion tractography study was conducted to examine whether altered microstructure of the dorsal column-medial lemniscus (DCML) tract, the postcentral gyrus to supramarginal gyrus (POCG-SMG) association tract, or the postcentral gyrus to Heschl’s gyrus (POCG-HG) association tract was related to poor proprioception after stroke. A moderate correlation was observed between the POCG-SMG and POCG-HG and proprioceptive impairment at one month post-stroke. These findings provided support to those from chapter 3 that identified the supramarginal and Heschl’s gyri as important regions for perceiving proprioceptive information. In chapter five, the association between corticospinal tract damage and motor or proprioceptive impairments was examined. Corticospinal tract damage was significantly associated with both motor and proprioceptive deficits after stroke. Together these results further our understanding of the structural correlates underlying proprioceptive impairments after stroke.
Description
Keywords
proprioception, position sense, somatosensory cortex, stroke, kinesthesia
Citation
Findlater, S. E. (2019). Neural correlates of proprioception after stroke (Doctoral thesis, University of Calgary, Calgary, Canada). Retrieved from https://prism.ucalgary.ca.