Quantifying snowmelt inputs in an alpine watershed for the purpose of investigating the role of groundwater storage

atmire.migration.oldid719
dc.contributor.advisorHayashi, Masaki
dc.contributor.authorHood, Jaime Lynn
dc.date.accessioned2013-01-30T15:44:15Z
dc.date.available2013-06-15T07:01:43Z
dc.date.issued2013-01-30
dc.date.submitted2013en
dc.description.abstractMountain headwaters contribute a greater amount of water to streamflow in Western Canada, relative to their area than lowland areas. Despite this, there is poor understanding of the source water contributions to late summer streamflow and how streamflow may be affected by increases in temperature and changes in precipitation patterns. This study used a water balance approach to study the sources of late summer streamflow and quantify groundwater storage in the Opabin watershed, a high alpine site within Yoho National Park, British Columbia, Canada. Field observations input into the water balance included stream discharge measurements, snow depth and density data, spatially distributed precipitation and on-site meteorological data. Snowmelt contributions to the water balance were quantified using a spatially distributed energy balance model (Utah Energy Balance Model). Spatially distributed incoming shortwave radiation was modeled using ArcGIS Solar Analyst. End-of-winter snow accumulation was quantified using a combination of interpolated field measurements and SWE reconstruction. The snowmelt modeling portion of this study included an assessment of the dominant controls on spatial melt rates in this watershed. Incoming has a greater influence than spatially variable SWE in controlling melt rates in this watershed, and this is attributed to the large gradients in incoming solar radiation. The water balance for two years indicates that annual groundwater storage in the watershed was 8-10% of the annual water balance. However, groundwater contributions during August and September were a substantial component of streamflow, as ascertained by a greater proportion of discharge relative to hydrologic inputs during those months. Linear reservoir modeling results and analysis of the time of concentration indicate that the response time during peak flows is on the order of several days. Response time during late summer and fall is approximately 14 days, as quantified using master recession curve analyses. This work contributes to the understanding of the relative contributions of hydrologic input sources to late summer streamflow in alpine regions.en_US
dc.identifier.citationHood, J. L. (2013). Quantifying snowmelt inputs in an alpine watershed for the purpose of investigating the role of groundwater storage (Doctoral thesis, University of Calgary, Calgary, Canada). Retrieved from https://prism.ucalgary.ca. doi:10.11575/PRISM/27499en_US
dc.identifier.doihttp://dx.doi.org/10.11575/PRISM/27499
dc.identifier.urihttp://hdl.handle.net/11023/532
dc.language.isoeng
dc.publisher.facultyGraduate Studies
dc.publisher.institutionUniversity of Calgaryen
dc.publisher.placeCalgaryen
dc.rightsUniversity of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission.
dc.subjectHydrology
dc.subjectPhysical Geography
dc.subject.classificationAlpineen_US
dc.subject.classificationsnow hydrologyen_US
dc.subject.classificationsolar radiationen_US
dc.titleQuantifying snowmelt inputs in an alpine watershed for the purpose of investigating the role of groundwater storage
dc.typedoctoral thesis
thesis.degree.disciplineGeoscience
thesis.degree.grantorUniversity of Calgary
thesis.degree.nameDoctor of Philosophy (PhD)
ucalgary.item.requestcopytrue
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ucalgary_2013_hood_jaime.pdf
Size:
7.15 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.65 KB
Format:
Item-specific license agreed upon to submission
Description: