Development of two novel carrier phase-based methods for multiple reference station positioning

dc.contributor.advisorLachapelle, Gérard
dc.contributor.advisorCannon, M. Elizabeth
dc.contributor.authorAlves, Paulo R.S.
dc.date.accessioned2005-08-16T17:00:46Z
dc.date.available2005-08-16T17:00:46Z
dc.date.issued2004
dc.descriptionBibliography: p. 197-203en
dc.descriptionSome pages are in colour.en
dc.description.abstractTwo methods for network-based carrier phase real-time kinematic positioning are proposed and evaluated in this thesis. These two methods are a correction-based, and a tightly coupled, approach. Novel algorithm enhancements are proposed for the correction-based approach, while the tightly coupled approach, which integrates reference station and user data in a single solution, is an innovative extension of a method previously developed. Each stage of the correction-based approach requires coherent information. The covariance function provides the stochastic basis of the estimation process and is used in each stage of this approach. A novel method for implementing an adaptive covariance function that is used subsequently is proposed. The adaptive qualities are shown to effectively track changing temporal and spatial error conditions, especially atmospheric conditions, throughout the data sets. The derivation of a least-squares prediction based approach, more specifically a least-squares collocation approach, is performed. This includes the value and variance-covariance of the estimated corrections. Further derivation shows the ef­fect of these elements on the reduced rover measurements. This approach reduces the differential measurement errors and improves position accuracy relative to the single baseline approach. The tightly coupled approach is an extension of a multiple mobile user positioning approach, whereby inter-receiver position differences are connected to all reference stations and user(s) in the same estimation filter. This could also be considered an extension of the correction-based approach where the position of one or more of the reference stations is uncertain or unknown. This approach is also shown to improve position accuracy relative to the single baseline and correction-based approach. These two methods are compared and analysed. In general, both methods per­form better than the single reference station approach however, the tightly coupled approach performs slightly better than the correction-based approach in terms of position accuracy, based on the data sets used for the evaluation of the two methods.en
dc.format.extentxix, 203 leaves : ill. ; 30 cm.en
dc.identifier.citationAlves, P. R. (2004). Development of two novel carrier phase-based methods for multiple reference station positioning (Doctoral thesis, University of Calgary, Calgary, Canada). Retrieved from https://prism.ucalgary.ca. doi:10.11575/PRISM/18229en_US
dc.identifier.doihttp://dx.doi.org/10.11575/PRISM/18229
dc.identifier.isbn0494045841en
dc.identifier.lccAC1 .T484 2004 A585en
dc.identifier.urihttp://hdl.handle.net/1880/41561
dc.language.isoeng
dc.publisher.institutionUniversity of Calgaryen
dc.publisher.placeCalgaryen
dc.rightsUniversity of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission.
dc.titleDevelopment of two novel carrier phase-based methods for multiple reference station positioning
dc.typedoctoral thesis
thesis.degree.disciplineGeomatics Engineering
thesis.degree.grantorUniversity of Calgary
thesis.degree.nameDoctor of Philosophy (PhD)
ucalgary.item.requestcopytrue
ucalgary.thesis.accessionTheses Collection 58.002:Box 1486 520492003
ucalgary.thesis.notesUARCen
ucalgary.thesis.uarcreleaseyen
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2004_Alves.pdf
Size:
24.62 MB
Format:
Adobe Portable Document Format
Description:
Collections