Effect of thermal maturity on remobilization of molybdenum in black shales

dc.contributor.authorArdakani, Omid H.
dc.contributor.authorChappaz, Anthony
dc.contributor.authorSanei, Hamed
dc.contributor.authorMayer, Bernhard
dc.date.accessioned2023-03-01T22:20:50Z
dc.date.available2023-03-01T22:20:50Z
dc.date.issued2016-09-01
dc.description.abstractMolybdenum (Mo) concentrations in sedimentary records have been widely used as a method to assess paleo-redox conditions prevailing in the ancient oceans. However, the potential effects of post-depositional processes, such as thermal maturity and burial diagenesis, on Mo concentrations in organic-rich shales have not been addressed, compromising its use as a redox proxy. This study investigates the distribution and speciation of Mo at various thermal maturities in the Upper Ordovician Utica Shale from southern Quebec, Canada. Samples display maturities ranging from the peak oil window (VRo∼1%) to the dry gas zone (VRo∼2%). While our data show a significant correlation between total organic carbon (TOC) and Mo (R2=0.40, n=28, P<0.0003) at lower thermal maturity, this correlation gradually deteriorates with increasing thermal maturity. Intervals within the thermally overmature section of the Utica Shale that contain elevated Mo levels (20–81 ppm) show petrographic and sulfur isotopic evidence of thermochemical sulfate reduction (TSR) along with formation of recrystallized pyrite. X-ray Absorption Fine Structure spectroscopy (XAFS) was used to determine Mo speciation in samples from intervals with elevated Mo contents (>30 ppm). Our results show the presence of two Mo species: molybdenite Mo(IV)S2 (39±5%) and Mo(VI)-Organic Matter (61±5%). This new evidence suggests that at higher thermal maturities, TSR causes sulfate reduction coupled with oxidation of organic matter (OM). This process is associated with H2S generation and pyrite formation and recrystallization. This in turn leads to the remobilization of Mo and co-precipitation of molybdenite with TSR-derived carbonates in the porous intervals. This could lead to alteration of the initial sedimentary signature of Mo in the affected intervals, hence challenging its use as a paleo-redox proxy in overmature black shales.en_US
dc.identifier.citationArdakani, O. H., Chappaz, A., Sanei, H., & Mayer, B. (2016). Effect of thermal maturity on remobilization of molybdenum in black shales. Earth and Planetary Science Letters, 449, 311–320. https://doi.org/10.1016/j.epsl.2016.06.004en_US
dc.identifier.doihttp://dx.doi.org/10.1016/j.epsl.2016.06.004en_US
dc.identifier.urihttp://hdl.handle.net/1880/115892
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.publisher.facultyScienceen_US
dc.publisher.hasversionacceptedVersionen_US
dc.publisher.institutionUniversity of Calgaryen_US
dc.publisher.policyhttps://www.elsevier.com/journals/earth-and-planetary-science-letters/0012-821x/open-access-optionsen_US
dc.rightsUnless otherwise indicated, this material is protected by copyright and has been made available with authorization from the copyright owner. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission.en_US
dc.titleEffect of thermal maturity on remobilization of molybdenum in black shalesen_US
dc.typejournal articleen_US
ucalgary.item.requestcopyfalseen_US
ucalgary.scholar.levelFacultyen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ardakani et al_EPSL_revised (2016).pdf
Size:
3.84 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.92 KB
Format:
Item-specific license agreed upon to submission
Description: