Browsing by Author "Xu, Bing"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Open Access Heat and drought impact on carbon exchange in an age-sequence of temperate pine forests(2022-01-25) Arain, M. A.; Xu, Bing; Brodeur, Jason J.; Khomik, Myroslava; Peichl, Matthias; Beamesderfer, Eric; Restrepo-Couple, Natalia; Thorne, RobinAbstract Background Most North American temperate forests are plantation or regrowth forests, which are actively managed. These forests are in different stages of their growth cycles and their ability to sequester atmospheric carbon is affected by extreme weather events. In this study, the impact of heat and drought events on carbon sequestration in an age-sequence (80, 45, and 17 years as of 2019) of eastern white pine (Pinus strobus L.) forests in southern Ontario, Canada was examined using eddy covariance flux measurements from 2003 to 2019. Results Over the 17-year study period, the mean annual values of net ecosystem productivity (NEP) were 180 ± 96, 538 ± 177 and 64 ± 165 g C m–2 yr–1 in the 80-, 45- and 17-year-old stands, respectively, with the highest annual carbon sequestration rate observed in the 45-year-old stand. We found that air temperature (Ta) was the dominant control on NEP in all three different-aged stands and drought, which was a limiting factor for both gross ecosystem productivity (GEP) and ecosystems respiration (RE), had a smaller impact on NEP. However, the simultaneous occurrence of heat and drought events during the early growing seasons or over the consecutive years had a significant negative impact on annual NEP in all three forests. We observed a similar trend of NEP decline in all three stands over three consecutive years that experienced extreme weather events, with 2016 being a hot and dry, 2017 being a dry, and 2018 being a hot year. The youngest stand became a net source of carbon for all three of these years and the oldest stand became a small source of carbon for the first time in 2018 since observations started in 2003. However, in 2019, all three stands reverted to annual net carbon sinks. Conclusions Our study results indicate that the timing, frequency and concurrent or consecutive occurrence of extreme weather events may have significant implications for carbon sequestration in temperate conifer forests in Eastern North America. This study is one of few globally available to provide long-term observational data on carbon exchanges in different-aged temperate plantation forests. It highlights interannual variability in carbon fluxes and enhances our understanding of the responses of these forest ecosystems to extreme weather events. Study results will help in developing climate resilient and sustainable forestry practices to offset atmospheric greenhouse gas emissions and improving simulation of carbon exchange processes in terrestrial ecosystem models.Item Open Access Performance of multistage-fractured horizontal wells with secondary discrete fractures in heterogeneous tight reservoirs(2024-02-13) Deng, Qi; Qu, Jianhua; Mi, Zhongrong; Xu, Bing; Lv, Xindong; Huang, Kai; Zhang, Boning; Nie, Ren-Shi; Chen, ShengnanAbstract A significant portion of tight sandstone reservoirs commonly displays intricate fluvial channels or fault systems. Despite various attempts at analytical/semi-analytical modeling of multistage-fractured horizontal wells (MFHWs) in unconventional reservoirs, the majority of studies have focused on scenarios with homogeneous original physical properties, neglecting cases where MFHWs traverse multiple regions in channelized heterogeneous reservoirs. Comprehending the influence of heterogeneous and leaky faults on the performance of MFHWs is essential for efficient development. This study presents an innovative semi-analytical model to analyze the pressure transient behavior of MFHWs with secondary fractures as they traverse multiple regions in banded channel heterogeneous reservoirs, particularly considering the presence of partially-communicating faults. The approach combines the source method and Green’s function method to obtain solutions, introducing a novel technique for discretizing fractures without discretizing interfaces. The effects of the reservoir heterogeneity, partially-communicating faults and fractures system on pressure behavior are analyzed. The results indicate that the pressure behavior of MFHWs passing through regions with different physical properties exhibits distinctive characteristics, differing from both the homogeneous case and the heterogeneous cases where the well does not traverse distinct regions. Permeability heterogeneity influences the curves of all other flow regimes, except the early and late flow regimes. Faults affect transient pressure behavior only when not positioned in the middle of each two primary fractures. Region area heterogeneity primarily influences the medium flow regimes. This work provides valuable insights into the performance of MFHWs in channelized heterogeneous reservoirs, offering technical support for well testing in these reservoirs.Item Open Access Performance of multistage-fractured horizontal wells with secondary discrete fractures in heterogeneous tight reservoirs(2024-02-13) Deng, Qi; Qu, Jianhua; Mi, Zhongrong; Xu, Bing; Lv, Xindong; Huang, Kai; Zhang, Boning; Nie, Ren-Shi; Chen, ShengnanAbstract A significant portion of tight sandstone reservoirs commonly displays intricate fluvial channels or fault systems. Despite various attempts at analytical/semi-analytical modeling of multistage-fractured horizontal wells (MFHWs) in unconventional reservoirs, the majority of studies have focused on scenarios with homogeneous original physical properties, neglecting cases where MFHWs traverse multiple regions in channelized heterogeneous reservoirs. Comprehending the influence of heterogeneous and leaky faults on the performance of MFHWs is essential for efficient development. This study presents an innovative semi-analytical model to analyze the pressure transient behavior of MFHWs with secondary fractures as they traverse multiple regions in banded channel heterogeneous reservoirs, particularly considering the presence of partially-communicating faults. The approach combines the source method and Green’s function method to obtain solutions, introducing a novel technique for discretizing fractures without discretizing interfaces. The effects of the reservoir heterogeneity, partially-communicating faults and fractures system on pressure behavior are analyzed. The results indicate that the pressure behavior of MFHWs passing through regions with different physical properties exhibits distinctive characteristics, differing from both the homogeneous case and the heterogeneous cases where the well does not traverse distinct regions. Permeability heterogeneity influences the curves of all other flow regimes, except the early and late flow regimes. Faults affect transient pressure behavior only when not positioned in the middle of each two primary fractures. Region area heterogeneity primarily influences the medium flow regimes. This work provides valuable insights into the performance of MFHWs in channelized heterogeneous reservoirs, offering technical support for well testing in these reservoirs.Item Open Access Performance of multistage-fractured horizontal wells with secondary discrete fractures in heterogeneous tight reservoirs(2024-02-13) Deng, Qi; Qu, Jianhua; Mi, Zhongrong; Xu, Bing; Lv, Xindong; Huang, Kai; Zhang, Boning; Nie, Ren-Shi; Chen, ShengnanAbstract A significant portion of tight sandstone reservoirs commonly displays intricate fluvial channels or fault systems. Despite various attempts at analytical/semi-analytical modeling of multistage-fractured horizontal wells (MFHWs) in unconventional reservoirs, the majority of studies have focused on scenarios with homogeneous original physical properties, neglecting cases where MFHWs traverse multiple regions in channelized heterogeneous reservoirs. Comprehending the influence of heterogeneous and leaky faults on the performance of MFHWs is essential for efficient development. This study presents an innovative semi-analytical model to analyze the pressure transient behavior of MFHWs with secondary fractures as they traverse multiple regions in banded channel heterogeneous reservoirs, particularly considering the presence of partially-communicating faults. The approach combines the source method and Green’s function method to obtain solutions, introducing a novel technique for discretizing fractures without discretizing interfaces. The effects of the reservoir heterogeneity, partially-communicating faults and fractures system on pressure behavior are analyzed. The results indicate that the pressure behavior of MFHWs passing through regions with different physical properties exhibits distinctive characteristics, differing from both the homogeneous case and the heterogeneous cases where the well does not traverse distinct regions. Permeability heterogeneity influences the curves of all other flow regimes, except the early and late flow regimes. Faults affect transient pressure behavior only when not positioned in the middle of each two primary fractures. Region area heterogeneity primarily influences the medium flow regimes. This work provides valuable insights into the performance of MFHWs in channelized heterogeneous reservoirs, offering technical support for well testing in these reservoirs.Item Open Access Performance of multistage-fractured horizontal wells with secondary discrete fractures in heterogeneous tight reservoirs(2024-02-13) Deng, Qi; Qu, Jianhua; Mi, Zhongrong; Xu, Bing; Lv, Xindong; Huang, Kai; Zhang, Boning; Nie, Ren-Shi; Chen, ShengnanAbstract A significant portion of tight sandstone reservoirs commonly displays intricate fluvial channels or fault systems. Despite various attempts at analytical/semi-analytical modeling of multistage-fractured horizontal wells (MFHWs) in unconventional reservoirs, the majority of studies have focused on scenarios with homogeneous original physical properties, neglecting cases where MFHWs traverse multiple regions in channelized heterogeneous reservoirs. Comprehending the influence of heterogeneous and leaky faults on the performance of MFHWs is essential for efficient development. This study presents an innovative semi-analytical model to analyze the pressure transient behavior of MFHWs with secondary fractures as they traverse multiple regions in banded channel heterogeneous reservoirs, particularly considering the presence of partially-communicating faults. The approach combines the source method and Green’s function method to obtain solutions, introducing a novel technique for discretizing fractures without discretizing interfaces. The effects of the reservoir heterogeneity, partially-communicating faults and fractures system on pressure behavior are analyzed. The results indicate that the pressure behavior of MFHWs passing through regions with different physical properties exhibits distinctive characteristics, differing from both the homogeneous case and the heterogeneous cases where the well does not traverse distinct regions. Permeability heterogeneity influences the curves of all other flow regimes, except the early and late flow regimes. Faults affect transient pressure behavior only when not positioned in the middle of each two primary fractures. Region area heterogeneity primarily influences the medium flow regimes. This work provides valuable insights into the performance of MFHWs in channelized heterogeneous reservoirs, offering technical support for well testing in these reservoirs.Item Open Access Performance of multistage-fractured horizontal wells with secondary discrete fractures in heterogeneous tight reservoirs(2024-02-13) Deng, Qi; Qu, Jianhua; Mi, Zhongrong; Xu, Bing; Lv, Xindong; Huang, Kai; Zhang, Boning; Nie, Ren-Shi; Chen, ShengnanAbstract A significant portion of tight sandstone reservoirs commonly displays intricate fluvial channels or fault systems. Despite various attempts at analytical/semi-analytical modeling of multistage-fractured horizontal wells (MFHWs) in unconventional reservoirs, the majority of studies have focused on scenarios with homogeneous original physical properties, neglecting cases where MFHWs traverse multiple regions in channelized heterogeneous reservoirs. Comprehending the influence of heterogeneous and leaky faults on the performance of MFHWs is essential for efficient development. This study presents an innovative semi-analytical model to analyze the pressure transient behavior of MFHWs with secondary fractures as they traverse multiple regions in banded channel heterogeneous reservoirs, particularly considering the presence of partially-communicating faults. The approach combines the source method and Green’s function method to obtain solutions, introducing a novel technique for discretizing fractures without discretizing interfaces. The effects of the reservoir heterogeneity, partially-communicating faults and fractures system on pressure behavior are analyzed. The results indicate that the pressure behavior of MFHWs passing through regions with different physical properties exhibits distinctive characteristics, differing from both the homogeneous case and the heterogeneous cases where the well does not traverse distinct regions. Permeability heterogeneity influences the curves of all other flow regimes, except the early and late flow regimes. Faults affect transient pressure behavior only when not positioned in the middle of each two primary fractures. Region area heterogeneity primarily influences the medium flow regimes. This work provides valuable insights into the performance of MFHWs in channelized heterogeneous reservoirs, offering technical support for well testing in these reservoirs.