Kinesiology Research & Publications
Permanent URI for this collection
Browse
Browsing Kinesiology Research & Publications by Department "Human Performance Lab"
Now showing 1 - 20 of 43
Results Per Page
Sort Options
Item Open Access Alteration of Strain Distribution in Distal Tibia After Triple Arthrodesis: Experimental and Finite Element Investigations(Journal of Medical and Biological Engineering, 2018-06-01) Chitsazan, Ahmad; Herzog, Walter; Rouhi, Gholamreza A.; Abbasi, MostafaArthrodesis, or fusion of subtalar joints (STJs), is a well-accepted and a routine treatment in the end stage of ankle injuries or disorder, such as arthritis or fractures. Arthrodesis can restore daily life function quickly at the expense of limiting joint motion. A triple arthrodesis (TA) consists of the surgical fusion of the talocalcaneal (TC), talonavicular (TN), and calcaneocuboid (CC) joints in the foot. This study aimed at investigating the effects of TA on strain distribution around tibia near the ankle joint. A finite element (FE) model, generated using computed tomography (CT) images of the human ankle, was then used to estimate stress distribution on the ankle joint surface. Axial load was applied to a human cadaveric ankle before and after TA, and load patterns were determined in various anatomical positions by measuring strain distribution around the tibia. Therefore, the effects of fusion were investigated by comparing strain distribution obtained from experiment and from FE model before and following to fusion. A good agreement between the experiment and FE, for the mean value of experimentally measured strains per the strains determined by FEM was observed (1.4±0.32 before TA, and 1.51±0.49 after TA). Moreover, a wellaccepted point-by-point comparison between FE results and experimentally measured strains was observed with a good correlation coefficient (r=0.94). Results of this study showed that: (1) there was a significant difference in strain magnitude and strain distribution around the tibia before and after TA; (2) the strain and stress were more uniformly distributed after fusion; and (3) the peak strain and stress values were shifted to the lateral and anterolateral portion of the tibia after the fusion. Results of this investigation showed that STJs fusion reduces the average values of strains around the cortical bone through changing the pattern of load transmission at the ankle joint.Item Open Access Alterations in structural macromolecules and chondrocyte deformations in lapine retropatellar cartilage 9 weeks after anterior cruciate ligament transection(Wiley-Blackwell, 2018-01) Han, Sang Kuy; Ronkainen, Ari P.; Saarakkala, Simo J.; Rieppo, Lassi; Herzog, Walter; Korhonen, Rami K.The structural integrity and mechanical environment of the articular cartilage matrix directly affect chondrocyte deformations. Rabbit models of early osteoarthritis at 9 weeks following anterior cruciate ligament transection (ACLT) have been shown to alter the deformation behavior of superficial zone chondrocytes in mechanically loaded articular cartilage. However, it is not fully understood whether these changes in cell mechanics are caused by changes in structural macromolecules in the extracellular matrix. Therefore, the purpose of this study was to characterize the proteoglycan content, collagen content, and collagen orientation at 9 weeks post ACLT using microscopic techniques, and relate these changes to the altered cell mechanics observed upon mechanical loading of cartilage. At 9 weeks following ACLT, collagen orientation was significantly (p < 0.05) altered and proteoglycan content was significantly (p < 0.05) reduced in the superficial zone cartilage matrix. These structural changes either in the extracellular or pericellular matrix (ECM and PCM) were also correlated significantly (p < 0.05) with chondrocyte width and height changes, thereby suggesting that chondrocyte deformation response to mechanical compression in early OA changes primarily because of alterations in matrix structure. However, compared to the normal group, proteoglycan content in the PCM from the ACLT group decreased less than that in the surrounding ECM. Therefore, PCM could play a key role to protect excessive chondrocyte deformations in the ACLT group. 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:342350, 2018.Item Open Access Altered mechanical properties of titin immunoglobulin domain 27 in the presence of calcium(European Biophysics Journal, 2013-04) DuVall, Michael M.; Gifford, Jessica L.; Amrein, Matthias W.; Herzog, WalterTitin (connectin) based passive force regulation has been an important physiological mechanism to adjust to varying muscle stretch conditions. Upon stretch, titin behaves as a spring capable of modulating its elastic response in accordance with changes in muscle biochemistry. One such mechanism has been the calcium-dependent stiffening of titin domains that renders the spring inherently more resistant to stretch. This transient titin-calcium interaction may serve a protective function in muscle, which could preclude costly unfolding of select domains when muscles elongate to great lengths. To test this idea, fluorescence spectroscopy was performed revealing a change in the microenvironment of the investigated immunoglobulin domain 27 (I27) of titin with calcium. Additionally, an atomic force microscope was used to evaluate the calcium-dependent regulation of passive force by stretching eight linked titin I27 domains until they unfolded. When stretching in the presence of calcium, the I27 homopolymer chain became stabilized, displaying three novel properties: (1) higher stretching forces were needed to unfold the domains, (2) the stiffness, measured as a persistence length (PL), increased and (3) the peak-to-peak distance between adjacent I27 domains increased. Furthermore, a peak order dependence became apparent for both force and PL, reflecting the importance of characterizing the dynamic unfolding history of a polymer with this approach. Together, this novel titin Ig-calcium interaction may serve to stabilize the I27 domain permitting titin to tune passive force within stretched muscle in a calcium-dependent manner.Item Open Access Are titin properties reflected in single myofibrils?(Journal of Biomechanics, 2012-07-26) Herzog, Jens A.; Leonard, Timothy R.; Jinha, Azim; Herzog, WalterTitin is a structural protein in muscle that spans the half sarcomere from Z-band to M-line. Although there are selected studies on titin's mechanical properties from tests on isolated molecules or titin fragments, little is known about its behavior within the structural confines of a sarcomere. Here, we tested the hypothesis that titin properties might be reflected well in single myofibrils. Single myofibrils from rabbit psoas were prepared for measurement of passive stretch-shortening cycles at lengths where passive titin forces occur. Three repeat stretch-shortening cycles with magnitudes between 1.0 and 3.0μm/sarcomere were performed at a speed of 0.1μm/s·sarcomere and repeated after a ten minute rest at zero force. These tests were performed in a relaxation solution (passive) and an activation solution (active) where cross-bridge attachment was inhibited with 2,3 butanedionemonoxime. Myofibrils behaved viscoelastically producing an increased efficiency with repeat stretch-shortening cycles, but a decreased efficiency with increasing stretch magnitudes. Furthermore, we observed a first distinct inflection point in the force-elongation curve at an average sarcomere length of 3.5μm that was associated with an average force of 68±5nN/mm. This inflection point was thought to reflect the onset of Ig domain unfolding and was missing after a ten minute rest at zero force, suggesting a lack of spontaneous Ig domain refolding. These passive myofibrillar properties observed here are consistent with those observed in isolated titin molecules, suggesting that the mechanics of titin are well preserved in isolated myofibrils, and thus, can be studied readily in myofibrils, rather than in the extremely difficult and labile single titin preparations.Item Open Access Assignment of adverse event indexing terms in randomized clinical trials involving spinal manipulative therapy: an audit of records in MEDLINE and EMBASE databases.(BMC Medical Research Methodology, 2017-03-14) Gorrell, Lindsay M.; Engel, Roger Mark; Lystad, R. P.; Brown, Benjamin T.Background: Reporting of adverse events in randomized clinical trials (RCTs) is encouraged by the authors of The Consolidated Standards of Reporting Trials (CONSORT) statement. With robust methodological design and adequate reporting, RCTs have the potential to provide useful evidence on the incidence of adverse events associated with spinal manipulative therapy (SMT). During a previous investigation, it became apparent that comprehensive search strategies combining text words with indexing terms was not sufficiently sensitive for retrieving records that were known to contain reports on adverse events. The aim of this analysis was to compare the proportion of articles containing data on adverse events associated with SMT that were indexed in MEDLINE and/or EMBASE and the proportion of those that included adverse event-related words in their title or abstract. Methods: A sample of 140 RCT articles previously identified as containing data on adverse events associated with SMT was used. Articles were checked to determine if: (1) they had been indexed with relevant terms describing adverse events in the MEDLINE and EMBASE databases; and (2) they mentioned adverse events (or any related terms) in the title or abstract. Results: Of the 140 papers, 91% were MEDLINE records, 85% were EMBASE records, 81% were found in both MEDLINE and EMBASE records, and 4% were not in either database. Only 19% mentioned adverse event-related text words in the title or abstract. There was no significant difference between MEDLINE and EMBASE records in the proportion of available papers (p=0.078). Of the 113 papers that were found in both MEDLINE and EMBASE records, only 3% had adverse event-related indexing terms assigned to them in both databases, while 81% were not assigned an adverse event-related indexing term in either database. Conclusions: While there was effective indexing of RCTs involving SMT in the MEDLINE and EMBASE databases, there was a failure of allocation of adverse event indexing terms in both databases. We recommend the development of standardized definitions and standardized adverse events reporting tools for adverse events associated with SMT. Adequate reporting of adverse events associated with SMT will facilitate accurate indexing of these types of manuscripts in the databases.Item Open Access Calcium sensitivity of residual force enhancement in rabbit skinned fibers(American Journal of Physiology, 2014-08-15) Joumaa, Venus; Herzog, WalterIsometric force after active stretch of muscles is higher than the purely isometric force at the corresponding length. This property is termed residual force enhancement. Active force in skeletal muscle depends on calcium attachment characteristics to the regulatory proteins. Passive force has been shown to influence calcium attachment characteristics, specifically the sarcomere length dependence of calcium sensitivity. Since one of the mechanisms proposed to explain residual force enhancement is the increase in passive force that results from engagement of titin upon activation and stretch, our aim was to test if calcium sensitivity of residual force enhancement was different from that of its corresponding purely isometric contraction and if such a difference was related to the molecular spring titin. Force-pCa curves were established in rabbit psoas skinned fibers for reference and residual force-enhanced states at a sarcomere length of 3.0 μm 1) in a titin-intact condition, 2) after treatment with trypsin to partially eliminate titin, and 3) after treatment with trypsin and osmotic compression with dextran T-500 to decrease the lattice spacing in the absence of titin. The force-pCa curves of residual force enhancement were shifted to the left compared with their corresponding controls in titin-intact fibers, indicating increased calcium sensitivity. No difference in calcium sensitivity was observed between reference and residual force-enhanced contractions in trypsin-treated and osmotically compressed trypsin-treated fibers. Furthermore, calcium sensitivity after osmotic compression was lower than that observed for residual force enhancement in titin-intact skinned fibers. These results suggest that titin-based passive force regulates the increase in calcium sensitivity of residual force enhancement by a mechanism other than reduction of the myofilament lattice spacing.Item Open Access Cartilage and chondrocyte response to extreme muscular loading and impact loading: Can in vivo pre-load decrease impact-induced cell death?(Elsevier, 2015-07) Bourne, Douglas A.; Moo, Engkuan; Herzog, WalterImpact loading causes cartilage damage and cell death. Pre-loading prior to impact loading may protect cartilage and chondrocytes. However, there is no systematic evidence and understanding of the effects of pre-load strategies on cartilage damage and chondrocyte death. This study aimed at determining the effects of the pre-load history on impact-induced chondrocyte death in an intact joint.Item Open Access Chronic uphill and downhill exercise protocols do not lead to sarcomerogenesis in mouse skeletal muscle(Journal of Biomechanics, 2019-11-05) Morais, Gustavo Paroschi; da Rocha, Alisson Luiz; Neave, Louise M.; de Araújo Lucas, Guilherme; Leonard, Timothy R.; Carvalho, Andrea; Silva, Adelino S. R.; Herzog, WalterIt has been suggested that eccentric contraction (EC) is associated with increases in serially-arranged sarcomeres (sarcomerogenesis), while concentric contraction (CC) has been associated with serial sarcomeres decrease. Sarcomerogenesis following EC is thought to be a protective muscle adaptation, preventing muscle injury in future eccentric exercise bouts (repeated bout effect). However, the mechanisms underlying sarcomerogenesis in EC remain unknown, and the sarcomerogenic responses observed in response to EC and CC are contradictory. We measured sarcomere length, sarcomere length uniformity, serial sarcomere number, and fascicle length in gastrocnemius medialis, tibialis anterior, vastus medialis and vastus lateralis in sedentary (SED) mice, and in mice following protocols of moderate uphill (TRU) and downhill (TRD) training and uphill (OTU) and downhill (OTD) overtraining. We found pain sensitivity after the first bout of EC exercise on TRD and OTD followed by a normalized sensory response after four weeks of training, indicating a repeated bout effect. However, these findings were not associated with sarcomerogenesis, as serial sarcomere numbers did not increase in TRD and OTD skeletal muscle samples compared to controls (SED). However, we found a decrease in serial sarcomere number in VL and TA in OTU group mice, which was associated with a decrease in fascicle length and no change of sarcomere length at the tested joint configuration. We conclude that excessive concentric muscle contraction (OTU group mice), leads to a decrease in serial sarcomere number, while moderate or excessive eccentric training, did not result in sarcomerogenesis, as reported in the literature.Item Open Access A clinically relevant BTX-A injection protocol leads to persistent weakness, contractile material loss, and an altered mRNA expression phenotype in rabbit quadriceps muscles(Journal of Biomechanics, 2015-07-16) Fortuna, Rafael; Sawatsky, Andrew; Herzog, Walter; Vaz, Marco Aurélio; Hart, David A.Botulinum toxin type-A (BTX-A) injections have become a common treatment modality for patients suffering from muscle spasticity. Despite its benefits, BTX-A treatments have been associated with adverse effects on target muscles. Currently, application of BTX-A is largely based on clinical experience, and research quantifying muscle structure following BTX-A treatment has not been performed systematically. The purpose of this study was to evaluate strength, muscle mass, and contractile material six months following a single or repeated (2 and 3) BTX-A injections into the quadriceps femoris of New Zealand white rabbits. Twenty three skeletally mature rabbits were divided into four groups: experimental group rabbits received 1, 2, or 3 injections at intervals of 3 months (1-BTX-A, 2-BTX-A, 3-BTX-A, respectively) while control group rabbits received volume-matched saline injections. Knee extensor strength, quadriceps muscle mass, and quadriceps contractile material of the experimental group rabbits were expressed as a percentage change relative to the control group rabbits. One-way ANOVA was used to determine group differences in outcome measures (α=0.05). Muscle strength and contractile material were significantly reduced in experimental compared to control group rabbits but did not differ between experimental groups. Muscle mass was the same in experimental BTX-A and control group rabbits. We concluded from these results that muscle strength and contractile material do not fully recover within six months of BTX-A treatment.Item Open Access Diet-induced obesity leads to pro-inflammatory alterations to the vitreous humour of the eye in a rat model(Springer Nature, 2018-02) Collins, Kelsey H.; Herzog, Walter; Reimer, Raylene A.; Reno, Carol R.; Heard, Bryan J.; Hart, David ArthurThe purpose of this study was to investigate if diet-induced obesity (DIO) and subsequent low-level systemic inflammation would result in local increases in pro-inflammatory mediators in the vitreous humour (VH) of the eyes of rats.Item Open Access Does partial titin degradation affect sarcomere length nonuniformities and force in active and passive myofibrils?(American Physiological Society, 2018-09-01) Joumaa, Vénus; Bertrand, F.; Liu, S.; Poscente, S.; Herog, WalterThe aim of this study was to determine the role of titin in preventing the development of sarcomere length nonuniformities following activation and after active and passive stretch by determining the effect of partial titin degradation on sarcomere length nonuniformities and force in passive and active myofibrils. Selective partial titin degradation was performed using a low dose of trypsin. Myofibrils were set at a sarcomere length of 2.4 µm and then passively stretched to sarcomere lengths of 3.4 and 4.4 µm. In the active condition, myofibrils were set at a sarcomere length of 2.8 µm, activated, and actively stretched by 1 µm/sarcomere. The extent of sarcomere length nonuniformities was calculated for each sarcomere as the absolute difference between sarcomere length and the mean sarcomere length of the myofibril. Our main finding is that partial titin degradation does not increase sarcomere length nonuniformities after passive stretch and activation compared with when titin is intact but increases the extent of sarcomere length nonuniformities after active stretch. Furthermore, when titin was partially degraded, active and passive stresses were substantially reduced. These results suggest that titin plays a crucial role in actively stretched myofibrils and is likely involved in active and passive force production.Item Open Access Eccentric resistance training of the knee extensor muscle: Training programs and neuromuscular adaptations(IOS Press, 2015-01-01) Manfredini Baroni, Bruno; Silveira Pinto, Ronei; Herzog, Walter; Vaz, Marco AurélioPURPOSE: This review is aimed at describing the methods used in knee extensor eccentric resistance training in healthy subjects and at evaluating the adaptations in strength, activation and structure of this muscle group. METHODS: Seventy-five studies were carefully analyzed and 30 are considered in this review. RESULTS: Training programs comprised of 1-4 sessions per week for a period ranging from four to 20 weeks with isokinetic dynamometers or conventional strength training machines were considered. Isokinetic eccentric training programs included 1-6 sets of 6-12 repetitions, while isotonic eccentric training programs consisted of 3-7 sets of 5-10 repetitions. Eccentric strength gains per training session (0.45-3.42%) were typically found to be greater compared to isometric (0.08-1.30%) and concentric (0.23-1.44%) strength gains. Quadriceps activation was improved in tests performed eccentrically and isometrically, but there is poor evidence of increased concentric activation and reduced co-activation of antagonistic muscles. Regarding muscle structure, significant hypertrophic responses have been demonstrated through increases in anatomical/physiological cross-sectional area, muscle thickness and fiber diameter. Most studies measuring muscle architectural changes reported increased fascicle lengths without changes in pennation angle. Adaptations in fiber type distribution were inconsistent. CONCLUSIONS: Strength gains following knee extensor eccentric training are caused by neural and structural adaptations, and may contribute to physical fitness in healthy populations and health improvement in patients.Item Open Access Effects of fiber type on force depression after active shortening in skeletal muscle(Elsevier, 2015-07-16) Joumaa, Vénus; Power, Geoffrey A.; Hisey, Brandon; Caicedo, A.; Stutz, J.; Herzog, WalterThe aim of this study was to investigate force depression in Type I and Type II muscle fibers. Experiments were performed using skinned fibers from rabbit soleus and psoas muscles. Force depression was quantified after active fiber shortening from an average sarcomere length (SL) of 3.2µ m to an average SL of 2.6 µm at an absolute speed of 0.115f iber length/s and at a relative speed corresponding to 17% of the unloaded shortening velocity (V0) in each type of fibers. Force decay and mechanical work during shortening were also compared between fiber types. After mechanical testing, each fiber was subjected to myosin heavy chain (MHC) analysis in order to confirm its type (Type I expressing MHC I, and Type II expressing MHC IId). Type II fibers showed greater steady-state force depression after active shortening at a speed of 0.115 fiber length/s than Type I fibers (14.5±1.5% versus 7.8±1.7%). Moreover, at this absolute shortening speed, Type I fibers showed a significantly greater rate of force decay during shortening and produced less mechanical work than Type II fibers. When active shortening was performed at the same relative speed (17% V0), the difference in force depression between fiber types was abolished. These results suggest that no intrinsic differences were at the origin of the disparate force depressions observed in Type I and Type II fibers when actively shortened at the same absolute speed, but rather their distinct force-velocity relationships.Item Open Access Energetic Considerations in Cross-Country Skiing(Springer, 2015-01) Herzog, Walter; Killick, Anthony; Boldt, Kevin RudiCross-country skiing is a four-legged gait, and some gait patterns, such as 2-skate skiing, are similar to those adopted by animals (galloping horse). Four-legged animals change gait patterns with increasing speeds of locomotion, at least in part, to minimize metabolic energy expenditure. For example, a horse will switch from a walk, to a trot, and finally to a gallop as speed of locomotion increases. Similarly, skate cross-country skiers will switch from a 2-skate gait to a 1-skate gait with increasing speeds of locomotion, but then unlike any other animal, will revert back to the previously-rejected 2-skate gait pattern at very high speeds. We used oxygen uptake measurements, force measurements in poles and skis, 3-dimensional movement analysis and functional muscle properties to explain this result. We found that propulsion in 1-skate skiing comes primarily from the arms/poles, while propulsion comes primarily from the legs/skis in the 2-skate technique. We also found that ground contact times for the skis are virtually independent of the skiing speed while pole contact times decrease dramatically with increasing speeds. Furthermore, propulsive forces from the arms dropped from skiing at 15 km/h to skiing at 30 km/h while simultaneously requiring much more metabolic energy. Finally, the cost of transport curves for 1-skate and 2-skate skiing intersected twice, indicating better efficiency for the 2-skate technique at slow and very fast speeds, and better efficiency for the 1-skate technique at intermediate to fast speeds. Combined, these results suggest that arm/pole action is optimized at intermediate speeds, thereby providing an advantage to the 1-skate technique which relies primarily on arm propulsion, while arm/pole action is highly inefficient at very high speeds, thus switching to the 2-skate technique which relies primarily on leg propulsion, is good strategy.Item Open Access Experimental validation of finite element predicted bone strain in the human metatarsal(2017-01) Fung, Anita; Loundagin, Lindsay L.; Edwards, William BrentMetatarsal stress fracture is a common injury observed in athletes and military personnel. Mechanical fatigue is believed to play an important role in the etiology of stress fracture, which is highly dependent on the resulting bone strain from the applied load. The purpose of this study was to validate a subject-specific finite element (FE) modeling routine for bone strain prediction in the human metatarsal. Strain gauge measurements were performed on 33 metatarsals from seven human cadaveric feet subject to cantilever bending, and subject-specific FE models were generated from computed tomography images. Material properties for the FE models were assigned using a published density-modulus relationship as well as density-modulus relationships developed from optimization techniques. The optimized relationships were developed with a 'training set' of metatarsals (n=17) and cross-validated with a 'test set' (n=16). The published and optimized density elasticity equations provided FE-predicted strains that were highly correlated with experimental measurements for both the training (r2≥0.95) and test (r2≥0.94) sets; however, the optimized equations reduced the maximum error by 10% to 20% relative to the published equation, and resulted in an X=Y type of relationship between experimental measurements and FE predictions. Using a separate optimized density-modulus equation for trabecular and cortical bone did not improve strain predictions when compared to a single equation that spanned the entire bone density range. We believe that the FE models with optimized material property assignment have a level of accuracy necessary to investigate potential interventions to minimize metatarsal strain in an effort to prevent the occurrence of stress fracture.Item Open Access Familial resemblance of bone health in maternal lineage pairs and triads: A scoping review protocol(2021-05-03) Boisvert, Nicole M.J.; Hayden, K. Alix; Doyle-Baker, Patricia K.Population: Maternal Pairs or Triads. Concept: Familial Resemblance. Context: Bone Health. Primary Question: What is the familial resemblance of bone health in pairs or triads within maternal biological lineage? Secondary Question: What is the correlation between bone health and bone health affecting behaviours of triads and pair within familial lineages?Item Open Access Femoral strain during walking predicted with muscle forces from static and dynamic optimization(Journal of Biomechanics, 2016-05-03) Edwards, W. B.; Miller, R.H.; Derrick, T.R.Mechanical strain plays an important role in skeletal health, and the ability to accurately and noninvasively quantify bone strain in vivo may be used to develop preventive measures that improve bone quality and decrease fracture risk. A non-invasive estimation of bone strain requires combined musculoskeletal - finite element modeling, for which the applied muscle forces are usually obtained from static optimization (SO) methods. In this study, we compared finite element predicted femoral strains in walking using muscle forces obtained from SO to those obtained from forward dynamics (FD) simulation. The general trends in strain distributions were similar between FD and SO derived conditions and both agreed well with previously reported in vivo strain gage measurements. On the other hand, differences in peak maximum (εmax) and minimum (εmin) principal strain magnitudes were as high as 32% between FD (εmax/εmin=945/-1271με) and SO (εmax/εmin=752/-859με). These large differences in strain magnitudes were observed during the first half of stance, where SO predicted lower gluteal muscle forces and virtually no co-contraction of the hip adductors compared to FD. The importance of these results will likely depend on the purpose/application of the modeling procedure. If the goal is to obtain a generalized strain distribution for adaptive bone remodeling algorithms, then traditional SO is likely sufficient. In cases were strain magnitudes are critical, as is the case with fracture risk assessment, bone strain estimation may benefit by including muscle activation and contractile dynamics in SO, or by using FD when practical.Item Open Access Functional properties of chondrocytes and articular cartilage using optical imaging to scanning probe microscopy(Journal of Orthopaedic Research, 2018-02) Xia, Yang; Darling, Eric M.; Herzog, WalterMature chondrocytes in adult articular cartilage vary in number, size, and shape, depending on their depth in the tissue, location in the joint, and source species. Chondrocytes are the primary structural, functional, and metabolic unit in articular cartilage, the loss of which will induce fatigue to the extracellular matrix (ECM), eventually leading to failure of the cartilage and impairment of the joint as a whole. This brief review focuses on the functional and biomechanical studies of chondrocytes and articular cartilage, using microscopic imaging from optical microscopies to scanning probe microscopy. Three topics are covered in this review, including the functional studies of chondrons by optical imaging (unpolarized and polarized light and infrared light, two-photon excitation microscopy), the probing of chondrocytes and cartilage directly using microscale measurement techniques, and different imaging approaches that can measure chondrocyte mechanics and chondrocyte biological signaling under in situ and in vivo environments. Technical advancement in chondrocyte research during recent years has enabled new ways to study the biomechanical and functional properties of these cells and cartilage. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:620-631, 2018.Item Open Access Intermittent stretch training of rabbit plantarflexor muscles increases soleus mass and serial sarcomere number(American Physiology Society, 2015-06-15) De Jaeger, Dominique; Joumaa, Venus; Herzog, WalterIn humans, enhanced joint range of motion is observed after static stretch training and results either from an increased stretch tolerance or from a change in the biomechanical properties of the muscle-tendon unit. We investigated the effects of an intermittent stretch training on muscle biomechanical and structural variables. The left plantarflexors muscles of seven anesthetized New Zealand (NZ) White rabbits were passively and statically stretched three times a week for 4 wk, while the corresponding right muscles were used as nonstretched contralateral controls. Before and after the stretching protocol, passive torque produced by the left plantarflexor muscles as a function of the ankle angle was measured. The left and right plantarflexor muscles were harvested from dead rabbits and used to quantify possible changes in muscle structure. Significant mass and serial sarcomere number increases were observed in the stretched soleus but not in the plantaris or medial gastrocnemius. This difference in adaptation between the plantarflexors is thought to be the result of their different fiber type composition and pennation angles. Neither titin isoform nor collagen amount was modified in the stretched compared with the control soleus muscle. Passive torque developed during ankle dorsiflexion was not modified after the stretch training on average, but was decreased in five of the seven experimental rabbits. Thus, an intermittent stretching program similar to those used in humans can produce a change in the muscle structure of NZ White rabbits, which was associated in some rabbits with a change in the biomechanical properties of the muscle-tendon unit.Item Open Access Is There an Optimal Pole Length for Double Poling in Cross Country Skiing?(Human Kinetics Journal, 2017-07) Onasch, Franziska; Killick, Anthony; Herzog, WalterThe aim of this study was to determine the effects of pole length on energy cost and kinematics in cross country double poling. Seven sub-elite male athletes were tested using pole sets of different lengths (ranging between 77% and 98% of participants' body height). Tests were conducted on a treadmill, set to a 2% incline and an approximate racing speed. Poling forces, contact times, and oxygen uptake were measured throughout the testing. Pole length was positively correlated with ground contact time (r = .57, p < .001) and negatively correlated with poling frequency (r = -.48, p = .003). Pole length was also positively correlated with pole recovery time and propulsive impulse produced per poling cycle (r = .36, p = .031; r = .35, p = .042, respectively). Oxygen uptake and pole length were negatively correlated (r = -.51, p = .004). This acute study shows that increasing pole length for double poling in sub-elite cross country skiers under the given conditions seems to change the poling mechanics in distinct ways, resulting in a more efficient poling action by decreasing an athlete's metabolic cost.
- «
- 1 (current)
- 2
- 3
- »