• Information Technology
  • Human Resources
  • Careers
  • Giving
  • Library
  • Bookstore
  • Active Living
  • Continuing Education
  • Go Dinos
  • UCalgary Maps
  • UCalgary Directory
  • Academic Calendar
My UCalgary
Webmail
D2L
ARCHIBUS
IRISS
  • Faculty of Arts
  • Cumming School of Medicine
  • Faculty of Environmental Design
  • Faculty of Graduate Studies
  • Haskayne School of Business
  • Faculty of Kinesiology
  • Faculty of Law
  • Faculty of Nursing
  • Faculty of Nursing (Qatar)
  • Schulich School of Engineering
  • Faculty of Science
  • Faculty of Social Work
  • Faculty of Veterinary Medicine
  • Werklund School of Education
  • Information TechnologiesIT
  • Human ResourcesHR
  • Careers
  • Giving
  • Library
  • Bookstore
  • Active Living
  • Continuing Education
  • Go Dinos
  • UCalgary Maps
  • UCalgary Directory
  • Academic Calendar
  • Libraries and Cultural Resources
View Item 
  •   PRISM Home
  • Science
  • Science Research & Publications
  • View Item
  •   PRISM Home
  • Science
  • Science Research & Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A KURATOWSKI THEOREM FOR ORIENTABLE SURFACES

Thumbnail
Download
1987-288-36.pdf (1.133Mb)
Download Record
Download to EndNote/RefMan (RIS)
Download to BibTex
Author
Vollmerhaus, Walter
Accessioned
2008-02-26T23:03:50Z
Available
2008-02-26T23:03:50Z
Computerscience
1999-05-27
Issued
1987-12-01
Subject
Computer Science
Type
unknown
Metadata
Show full item record

Abstract
Let $SIGMA$ denote a 2-dimensional surface. A graph $G$ is irreducible for $SIGMA$ provided that $G$ does not embed into $SIGMA$, but every proper subgraph of $G$ does. Let $I$($SIGMA$) denote the set of graphs with vertex degree at least three that are irreducible for $SIGMA$. In this paper we prove that $I$($SIGMA$) is finite for each orientable surface. Together with the result by D. Archdeacon and Huneke, stating that $I$($SIGMA$) is finite for each non-orientable surface, this settles a conjecture of Erd$o dotdot$'s from the 1930s that $I$($SIGMA$) is finite for each surface $SIGMA$. Let $SIGMA sub n$ denote the closed orientable surface of genus $n$. We also write $gamma$($SIGMA$) to denote the genus of orientable surface $SIGMA$. Let $G$ be a finite graph. An embedding of $G$ into a surface $SIGMA$ is a topological map \o'0 /'$:G -> SIGMA$. The orientable genus $gamma$($G$) of the graph $G$ is defined to be the least value of $gamma$($SIGMA$) for all orientable surfaces $SIGMA$ into which $G$ can be embedded. Let $P$ be a property of a graph $G$. We say that $G$ is $P$-critical provided that $G$ has property $P$ but no proper subgraph of $G$ has property $P$. For example, if $P$ is the property that $gamma$($G$) $>= 1$, then the $P$-critical graphs are the two Kuratowski graphs $K sub 5$ and $K sub 3,3$. In general, if $P$ is the property that $gamma$($G$) $>= n$, then a $P$-critical graph can be embedded in $SIGMA sub n$ but not in $SIGMA sub {n - 1}$. Such a $P$-critical graph is also called irreducible for the surface $SIGMA sub {n - 1}$. For any surface $SIGMA$, let $I$($SIGMA$) denote the set of graphs that have no vertices of degree two and are irreducible for $SIGMA$.
Notes
We are currently acquiring citations for the work deposited into this collection. We recognize the distribution rights of this item may have been assigned to another entity, other than the author(s) of the work.If you can provide the citation for this work or you think you own the distribution rights to this work please contact the Institutional Repository Administrator at digitize@ucalgary.ca
Corporate
University of Calgary
Faculty
Science
Doi
http://dx.doi.org/10.11575/PRISM/31105
Uri
http://hdl.handle.net/1880/45689
Collections
  • Science Research & Publications

Browse

All of PRISMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Download Results

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

  • Email
  • SMS
  • 403.220.8895
  • Live Chat

Energize: The Campaign for Eyes High

Privacy Policy
Website feedback

University of Calgary
2500 University Drive NW
Calgary, AB T2N 1N4
CANADA

Copyright © 2017