• Information Technology
  • Human Resources
  • Careers
  • Giving
  • Library
  • Bookstore
  • Active Living
  • Continuing Education
  • Go Dinos
  • UCalgary Maps
  • UCalgary Directory
  • Academic Calendar
My UCalgary
Webmail
D2L
ARCHIBUS
IRISS
  • Faculty of Arts
  • Cumming School of Medicine
  • Faculty of Environmental Design
  • Faculty of Graduate Studies
  • Haskayne School of Business
  • Faculty of Kinesiology
  • Faculty of Law
  • Faculty of Nursing
  • Faculty of Nursing (Qatar)
  • Schulich School of Engineering
  • Faculty of Science
  • Faculty of Social Work
  • Faculty of Veterinary Medicine
  • Werklund School of Education
  • Information TechnologiesIT
  • Human ResourcesHR
  • Careers
  • Giving
  • Library
  • Bookstore
  • Active Living
  • Continuing Education
  • Go Dinos
  • UCalgary Maps
  • UCalgary Directory
  • Academic Calendar
  • Libraries and Cultural Resources
View Item 
  •   PRISM Home
  • Science
  • Science Research & Publications
  • View Item
  •   PRISM Home
  • Science
  • Science Research & Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

GRODEC, THE GRODEC ACTION POTENTIAL, AND GRODEC-BASED NEURAL NETWORKS

Thumbnail
Download
1995-579-31.pdf (3.576Mb)
Download Record
Download to EndNote/RefMan (RIS)
Download to BibTex
Author
Bradley, James
Accessioned
2008-02-27T23:00:56Z
Available
2008-02-27T23:00:56Z
Computerscience
1999-05-27
Issued
1995-12-01
Subject
Computer Science
Type
unknown
Metadata
Show full item record

Abstract
Grodecs are abstract growth decay entities that are related to oscillators. The switching behaviour of grodecs has been analysed in detail and it is shown that grodecs can be used as the basis of both an unconventional type of neural net called a grocec stack machine, as well as conventional neural nets. A single grodec has the most of the switching properties of a short section of biological membrane, and can give rise to action potentials when properly set. A pair of grodecs can generate a much sharper action potential than can a single grodec, and this mechanism is very like that of a neuron with dual Na and K ion switching, so that a neuron membrane can be regarded conceptually as a Na grodec coupled to a K grodec. Grodecs can be coupled in positive (excitatory) or negative (inhibitory) manner to form logic circuits. Examples of such circuits are given, and show that grodecs can be the basis of conventional neural nets and sequential machines in general. Grodecs can also be coupled in an unconventional manner to form grodec stack machines. In such machines the action potentials sum in periods of growth and decay, so that a central machine pressure parameter exhibits time function behaviour similar to that of a fractal growth-decay time function, such as an En:m function. Although the manner of the summation is much simpler than in grodec stack machines, action potential summation does occur in nature, and causes the large voltages generated by electric fish.
Notes
We are currently acquiring citations for the work deposited into this collection. We recognize the distribution rights of this item may have been assigned to another entity, other than the author(s) of the work.If you can provide the citation for this work or you think you own the distribution rights to this work please contact the Institutional Repository Administrator at digitize@ucalgary.ca
Corporate
University of Calgary
Faculty
Science
Doi
http://dx.doi.org/10.11575/PRISM/30444
Uri
http://hdl.handle.net/1880/46315
Collections
  • Science Research & Publications

Browse

All of PRISMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Download Results

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

  • Email
  • SMS
  • 403.220.8895
  • Live Chat

Energize: The Campaign for Eyes High

Privacy Policy
Website feedback

University of Calgary
2500 University Drive NW
Calgary, AB T2N 1N4
CANADA

Copyright © 2017