On generalized heat polynomials

dc.contributor.authorNasim, C.
dc.date.accessioned2018-09-27T12:33:40Z
dc.date.available2018-09-27T12:33:40Z
dc.date.issued1988-01-01
dc.date.updated2018-09-27T12:33:39Z
dc.description.abstractWe consider the generalized heat equation of nth order ∂2u∂r2+n−1r∂u∂r−α2r2u=∂u∂t. If the initial temperature is an even power function, then the heat transform with the source solution as the kernel gives the heat polynomial. We discuss various properties of the heat polynomial and its Appell transform. Also, we give series representation of the heat transform when the initial temperature is a power function.
dc.description.versionPeer Reviewed
dc.identifier.citationC. Nasim, “On generalized heat polynomials,” International Journal of Mathematics and Mathematical Sciences, vol. 11, no. 2, pp. 393-400, 1988. doi:10.1155/S0161171288000456
dc.identifier.doihttps://doi.org/10.1155/S0161171288000456
dc.identifier.urihttp://hdl.handle.net/1880/108669
dc.identifier.urihttps://doi.org/10.11575/PRISM/44308
dc.language.rfc3066en
dc.rights.holderCopyright © 1988 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
dc.titleOn generalized heat polynomials
dc.typeJournal Article
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
IJMMS.1988.759085.pdf
Size:
401.66 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
0 B
Format:
Item-specific license agreed upon to submission
Description: