Admissible groups, symmetric factor sets, and simple algebras

dc.contributor.authorMollin, R. A.
dc.date.accessioned2018-09-27T12:35:29Z
dc.date.available2018-09-27T12:35:29Z
dc.date.issued1984-01-01
dc.date.updated2018-09-27T12:35:29Z
dc.description.abstractLet K be a field of characteristic zero and suppose that D is a K-division algebra; i.e. a finite dimensional division algebra over K with center K. In Mollin [1] we proved that if K contains no non-trivial odd order roots of unity, then every finite odd order subgroup of D* the multiplicative group of D, is cyclic. The first main result of this paper is to generalize (and simplify the proof of) the above. Next we generalize and investigate the concept of admissible groups. Finally we provide necessary and sufficient conditions for a simple algebra, with an abelian maximal subfield, to be isomorphic to a tensor product of cyclic algebras. The latter is achieved via symmetric factor sets.
dc.description.versionPeer Reviewed
dc.identifier.citationR. A. Mollin, “Admissible groups, symmetric factor sets, and simple algebras,” International Journal of Mathematics and Mathematical Sciences, vol. 7, no. 4, pp. 707-711, 1984. doi:10.1155/S0161171284000739
dc.identifier.doihttps://doi.org/10.1155/S0161171284000739
dc.identifier.urihttp://hdl.handle.net/1880/108681
dc.identifier.urihttps://doi.org/10.11575/PRISM/44905
dc.language.rfc3066en
dc.rights.holderCopyright © 1984 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
dc.titleAdmissible groups, symmetric factor sets, and simple algebras
dc.typeJournal Article
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
IJMMS.1984.401870.pdf
Size:
415.77 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
0 B
Format:
Item-specific license agreed upon to submission
Description: