Metabolomics in severe traumatic brain injury: a scoping review

Abstract
Abstract Background Diagnosis and prognostication of severe traumatic brain injury (sTBI) continue to be problematic despite years of research efforts. There are currently no clinically reliable biomarkers, though advances in protein biomarkers are being made. Utilizing Omics technology, particularly metabolomics, may provide new diagnostic biomarkers for sTBI. Several published studies have attempted to determine the specific metabolites and metabolic pathways involved; these studies will be reviewed. Aims This scoping review aims to summarize the current literature concerning metabolomics in sTBI, review the comprehensive data, and identify commonalities, if any, to define metabolites with potential clinical use. In addition, we will examine related metabolic pathways through pathway analysis. Methods Scoping review methodology was used to examine the current literature published in Embase, Scopus, PubMed, and Medline. An initial 1090 publications were identified and vetted with specific inclusion criteria. Of these, 20 publications were selected for further examination and summary. Metabolic data was classified using the Human Metabolome Database (HMDB) and arranged to determine the ‘recurrent’ metabolites and classes found in sTBI. To help understand potential mechanisms of injury, pathway analysis was performed using these metabolites and the Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway Database. Results Several metabolites related to sTBI and their effects on biological pathways were identified in this review. Across the literature, proline, citrulline, lactate, alanine, valine, leucine, and serine all decreased in adults post sTBI, whereas both octanoic and decanoic acid increased. Hydroxy acids and organooxygen compounds generally increased following sTBI, while most carboxylic acids decreased. Pathway analysis showed significantly affected glycine and serine metabolism, glycolysis, branched-chain amino acid (BCAA) metabolism, and other amino acid metabolisms. Interestingly, no tricarboxylic acid cycle metabolites were affected. Conclusion Aside from a select few metabolites, classification of a metabolic profile proved difficult due to significant ambiguity between study design, sample size, type of sample, metabolomic detection techniques, and other confounding variables found in sTBI literature. Given the trends found in some studies, further metabolomics investigation of sTBI may be useful to identify clinically relevant metabolites.
Description
Keywords
Citation
BMC Neuroscience. 2023 Oct 16;24(1):54