Receiver-level Signal and Measurement Quality Monitoring for Reliable GNSS-based Navigation

dc.contributor.advisorLachapelle, Gerard Jules
dc.contributor.advisorO'Keefe, Kyle P. G.
dc.contributor.authorPirsiavash, Ali
dc.contributor.committeememberBroumandan, Ali
dc.contributor.committeememberLichti, Derek D.
dc.contributor.committeememberGao, Yang
dc.contributor.committeememberLohan, Elena-Simona
dc.date2019-06
dc.date.accessioned2019-01-15T19:59:25Z
dc.date.available2019-01-15T19:59:25Z
dc.date.issued2019-01-09
dc.description.abstractGlobal Navigation Satellite Systems (GNSS) are widely used in everyday and safety of life services as the main system for positioning and timing solutions. Reliability and service integrity are of utmost importance given a variety of error sources and threats. In the case of aviation and maritime applications, system integrity includes ground and space-based augmentation systems. These externally-aided monitoring systems do not provide a satisfactory solution for land users due to the multiplicity of error sources in the user's local environment, such as multipath. This research investigates receiver level stand-alone integrity monitoring solutions for such users. The methodology is based on Signal and Measurement Quality Monitoring (SQM and MQM) to detect and exclude or de-weight faulty measurements, with multipath and spoofing being the major concerns. Different monitoring metrics are defined and investigated for multipath detection and new geometry-based exclusion and de-weighting techniques are developed. Following an analytical discussion of metric sensitivity and effectiveness, simulated and field data analysis are provided to verify practical performance. Results obtained for the designed SQM and MQM-based detection metrics show reliable performance of 3 to 5 m Minimum Detectable Multipath Error (MDME). Although limited by multipath characteristics and measurement geometry, when detected faulty measurements are excluded or de-weighted, positioning performance improves for various multipath scenarios. In order to effectively classify multipath and spoofing, a spoofing simulator is designed, implemented and tested for selected time and position spoofing scenarios. A new spoofing strategy is described to investigate the minimum number of satellite signals required for an effective spoofing attack. Results show that in an overlapped spoofing scenario, at least 60% of signals are spoofed and thus distorted. This rate of signal distortion is not the case in all but harsh multipath scenarios and is used to distinguish spoofing attacks from multipath. More importantly, it is shown that distortion of more than half of the signals makes position solutions unreliable regardless of the error source. For selected scenarios, two-dimensional time/frequency widely-spaced SQM metrics are also developed to detect spoofing signals with about 3% false alarm probability imposed by multipath and other sources of signal distortion.en_US
dc.identifier.citationPirsiavash, A. (2019). Receiver-level Signal and Measurement Quality Monitoring for Reliable GNSS-based Navigation (Doctoral thesis, University of Calgary, Calgary, Canada). Retrieved from https://prism.ucalgary.ca.en_US
dc.identifier.doihttp://dx.doi.org/10.11575/PRISM/35730
dc.identifier.urihttp://hdl.handle.net/1880/109467
dc.language.isoenen_US
dc.publisher.facultySchulich School of Engineeringen_US
dc.publisher.institutionUniversity of Calgaryen
dc.rightsUniversity of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission.en_US
dc.subjectGlobal Navigation Satellite Systems (GNSS), Signal and Measurement Quality Monitoringen_US
dc.subject.classificationEngineering--Electronics and Electrical Engineering--Aerospaceen_US
dc.titleReceiver-level Signal and Measurement Quality Monitoring for Reliable GNSS-based Navigationen_US
dc.typedoctoral thesisen_US
thesis.degree.disciplineEngineering – Geomaticsen_US
thesis.degree.grantorUniversity of Calgaryen_US
thesis.degree.nameDoctor of Philosophy (PhD)en_US
ucalgary.item.requestcopytrue
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ucalgary_2019_pirsiavash_ali.pdf
Size:
10.57 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.74 KB
Format:
Item-specific license agreed upon to submission
Description: